<%pg=request.getParameter("page");%>
     

English    Imprimer      Envoyer par e-mail    

Référence bibliographique

Amy G, Debroux JF, Arnold R et LG Wilson (1996) Emploi de la pré-ozonation pour augmenter la biodégradabilité d'un effluent secondaire dans un système de traitement par inflitration dans le sol. Rev. Sci. Eau. 9 (3) : 365-380. [article en anglais]

Titre original: Preozonation for Enhancing the Biodegradability of Wastewater Effluent in a Potable-Recovery Soil Aquifer Treatment (SAT) System.

Texte intégral (PDF)

Résumé

La réutilisation des eaux usées est reconnue comme une technique importante dans les régions arides et /ou grandes consommatrices d'eau. L'une des méthodes actuellement très employée consiste à recharger la nappe phréatique avec des effluents secondaires via des bassins d'infiltration. L'épuration biologique et / ou chimique à travers la zone non-saturée représente une caractéristique importante de cette technologie. Les procédés de ce type sont connus sous l'appellation de Soil Aquifer Treatment (SAT) ou géofiltration. Dans ce travail, le procédé a été étudié comme méthode de réhabilitation d'un effluent secondaire d'eaux usées jusqu'au stade d'eau potable. Cette recherche a été principalement axée sur le comportement, le transport des matières organiques (MO) de l'effluent et particulièrement sur leur rôle de précurseurs potentiels de sous-produits de désinfection lors de la réutilisation de la nappe. Dans la zone vadose, la matière organique est principalement éliminée par biodégradation, et à un degré moindre, par adsorption. Les simulations du procédé, en laboratoire, ont été réalisées en réacteurs recirculés aérobies, en mode cuvée, avec un biofilm acclimaté sur des particules de sable siliceux, afin de déterminer la fraction biodégradable des MO. L'évaluation de celle-ci est essentielle pour prédire leur potentiel de dégradation par la biomasse de la zone vadose. L'effluent mis en oeuvre est issu d'une station d'épuration de l'Arizona (États-Unis) avec biofiltre (lit filtrant à support plastique); sa concentration en carbone organique dissous (COD) se situe entre 10 et 15 mg/L.

L'effluent mis 5 jours durant en contact avec le biofilm acclimaté du réacteur montre un abattement de 50-60 % du COD. Il a ainsi été déterminé qu'environ 80 % de l'élimination des MO de l'effluent survient dans les premières 24 heures d'expérimentation, alors que le reste, près de 20 %, est éliminé durant les 48 heures suivantes. Dans ces conditions, le délai de 5 jours apparait suffisant pour dégrader les MO présentes dans ces effluents. Les rendements observés augurent bien de la dégradation dans la zone vadose si l'on tient compte de la combinaison des taux et de la hauteur d'infiltration avec des temps de résidence de 2 à 14 jours ainsi qu'il est proposé dans le procédé. Afin d'accroître la biodégradabilité des MO, une ozonation a été effectuée, en amont du bio-traitement, avec un générateur d'ozone à l'échelle du banc d'essai fonctionnant en mode semi-continu (admission continue de gaz, volume stable de liquide). La pré-ozonation a permis d'accroître la biodégradation de 60-70 %. Bien qu'un fort pourcentage de MO soit éliminé dans ce schéma, il ressort que l'ozone n'a qu'un effet modeste sur la transformation des MO dissoutes non-biodégradables en matières biodégradables par rapport à des expériences similaires effectuées avec des matières organiques naturelles (MON) des eaux de surface. L'eau usée ainsi traitée présente des niveaux de COD comparables à ceux d'une eau de surface employée à des fins de consommation. Les caractéristiques des MO de l'effluent ont été comparées à celles des MON. Une ultrafiltration de l'effluent pour déterminer le poids moléculaire apparent des MO, donne une distribution bimodale de leur poids moléculaire par rapport à une distribution logarithmique normale observée avec des MON typiques. En utilisant des résines non- ioniques pour séparer les fractions hydrophobes et hydrophiles des MO, il ressort que l'ozonation ne transforme pas de façon significative la fraction hydrophobe des MO de l'effluent en fraction hydrophile, tel que cela a été observé durant l'ozonation des MON. Ces eaux ont été chlorées en pilote, selon des conditions similaires à celles des réseaux de distribution (CI2:COD=1:1mg/mg, période d'incubation=24 heures) afin de simuler la post-désinfection après récupération. Les sous-produits réglementés (Trihalométhanes THM) et ceux proposés (Acides holoacétiques, HAA6) ont été formés à des taux inférieurs ou proches des normes en vigueur (ou de celles proposées pour HAA6) pour l'eau potable aux États-Unis. Cependant, une nitrification significative a été observée dans nos simulations de traitement par le sol avec un effluent non-nitrifié, conduisant à des teneurs en nitrates supérieures à la norme américaine pour l'eau potable (10 mg/L).

Mots clés

Matières organiques, biodégradabilité, eau usée, ozone, géofiltration.

Correspondance

G Amy, University of Colorado at Boulder, USA

English    Imprimer          Envoyer par e-mail          


     


Mise à jour: 2006-12-20
© INRS Eau, Terre et Environnement